
HDL Verifier™

Getting Started Guide

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Verifier™ Getting Started Guide
© COPYRIGHT 2003–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.1.1 (Release 14)
October 2004 Online only Revised for Version 1.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.3 (Release 14SP1+)
March 2005 Online only Revised for Version 1.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.4 (Release 2008a)
October 2008 Online only Revised for Version 2.5 (Release 2008b)
March 2009 Online only Revised for Version 2.6 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 4.0 (Release 2012a)
September 2012 Online only Revised for Version 4.1 (Release 2012b)
March 2013 Online only Revised for Version 4.2 (Release 2013a)
September 2013 Online only Revised for Version 4.3 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.6 (Release 2015a)
September 2015 Online only Revised for Version 4.7 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)

Contents

Introduction
1

HDL Verifier Product Description . 1-2
Key Features . 1-2

About HDL Verifier
2

HDL Cosimulation . 2-2
HDL Cosimulation with MATLAB or Simulink 2-2
Communications for HDL Cosimulation 2-6
Hardware Description Language (HDL) Support 2-6
HDL Cosimulation Workflows . 2-7
Product Features and Platform Support 2-7

FPGA Verification . 2-8
FPGA Verification with HDL Verifier and HDL Coder 2-8
Product Features and Platform Support 2-8

TLM Component Generation . 2-10
Generating TLM Components for Virtual Platform

Development . 2-10
Typical Users and Applications . 2-11
Product Feature and Platform Support 2-12

SystemVerilog DPI Component Generation 2-13
Export Simulink Subsystem or MATLAB Function Using DPI

Interface . 2-13
Generate SystemVerilog DPI Test Bench in HDL Coder . . . 2-13

HDL Verifier Supported Hardware . 2-15

v

Third-Party Product Requirements
3

Supported EDA Tools and Hardware 3-2
Cosimulation Requirements . 3-2
FPGA Verification Requirements . 3-3
DPI Component Generation Requirements 3-9
TLM Generation Requirements . 3-9

vi Contents

1

Introduction

1 Introduction

HDL Verifier Product Description
Verify VHDL and Verilog using HDL simulators and FPGA-in-the-loop test benches

HDL Verifier™ automatically generates test benches for Verilog® and VHDL® design
verification. You can use MATLAB® or Simulink® to directly stimulate your design and
then analyze its response using HDL cosimulation or FPGA-in-the-loop with Xilinx® and
Altera® FPGA boards. This approach eliminates the need to author standalone Verilog or
VHDL test benches.

HDL Verifier also generates components that reuse MATLAB and Simulink models
natively in simulators from Cadence®, Mentor Graphics®, and Synopsys®. These
components can be used as verification checker models or as stimuli in more complex
test-bench environments such as those that use the Universal Verification Methodology
(UVM).

Key Features

• Cosimulation with Cadence Incisive®, Mentor Graphics ModelSim®, or Questa®

• FPGA-in-the-loop verification using Xilinx and Altera FPGA boards
• SystemVerilog DPI component generation from MATLAB functions and Simulink

blocks
• Generation of IEEE® 1666 SystemC TLM 2.0 compatible transaction-level models
• Automated verification workflow with HDL Coder™

1-2

2

About HDL Verifier

• “HDL Cosimulation” on page 2-2
• “FPGA Verification” on page 2-8
• “TLM Component Generation” on page 2-10
• “SystemVerilog DPI Component Generation” on page 2-13
• “HDL Verifier Supported Hardware” on page 2-15

2 About HDL Verifier

HDL Cosimulation

In this section...

“HDL Cosimulation with MATLAB or Simulink” on page 2-2
“Communications for HDL Cosimulation” on page 2-6
“Hardware Description Language (HDL) Support” on page 2-6
“HDL Cosimulation Workflows” on page 2-7
“Product Features and Platform Support” on page 2-7

HDL Cosimulation with MATLAB or Simulink

The HDL Verifier software consists of MATLAB functions, a MATLAB System object™,
and a library of Simulink blocks, all of which establish communication links between the
HDL simulator and MATLAB or Simulink.

HDL Verifier software streamlines FPGA and ASIC development by integrating tools
available for the following processes:

1 Developing specifications for hardware design reference models
2 Implementing a hardware design in HDL based on a reference model
3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks® products fit into
this hardware design scenario.

2-2

 HDL Cosimulation

As the figure shows, HDL Verifier software connects tools that traditionally have been
used discretely to perform specific steps in the design process. By connecting these tools,
the link simplifies verification by allowing you to cosimulate the implementation and
original specification directly. This cosimulation results in significant time savings and
the elimination of errors inherent to manual comparison and inspection.

In addition to the preceding design scenario, HDL Verifier software enables you to work
with tools in the following ways:

• Use MATLAB or Simulink to create test signals and software test benches for HDL
code

• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation
• Use MATLAB analysis and visualization capabilities for real-time insight into an

HDL implementation
• Use Simulink to translate legacy HDL descriptions into system-level views

Note: You can cosimulate a module using SystemVerilog, SystemC or both with
MATLAB or Simulink using the HDL Verifier software. Write simple wrappers around
the SystemC and make sure that the SystemVerilog cosimulation connections are to
ports or signals of data types supported by the link cosimulation interface.

More discussion on how cosimulation works can be found in the following sections:

• “Linking with MATLAB and the HDL Simulator” on page 2-3
• “Linking with Simulink and the HDL Simulator” on page 2-5
• “The HDL Cosimulation Wizard” on page 2-6

Linking with MATLAB and the HDL Simulator

When linked with MATLAB, the HDL simulator functions as the client, as the following
figure shows.

MATLAB
Server

HDL
Simulator
Client

Link

Out

Out

In

In

Request

Response

2-3

2 About HDL Verifier

In this scenario, a MATLAB server function waits for service requests that it receives
from an HDL simulator session. After receiving a request, the server establishes a
communication link and invokes a specified MATLAB function that computes data
for, verifies, or visualizes the HDL module (coded in VHDL or Verilog) that is under
simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator or use with
MATLAB with the supplied HDL Verifier function:

• nclaunch (Incisive®)
• vsim (ModelSim)

The following figure shows how a MATLAB test bench function wraps around and
communicates with the HDL simulator during a test bench simulation session.

The following figure shows how a MATLAB component function is wrapped around by
and communicates with the HDL simulator during a component simulation session.

When you begin a specific test bench or component session, you specify parameters that
identify the following information:

2-4

 HDL Cosimulation

• The mode and, if applicable, TCP/IP data for connecting to a MATLAB server
• The MATLAB function that is associated with and executes on behalf of the HDL

instance
• Timing specifications and other control data that specifies when the module's

MATLAB function is to be called

Linking with Simulink and the HDL Simulator

When linked with Simulink, the HDL simulator functions as the server, as shown in the
following figure.

Simulink
Client

HDL Simulator
Server

Out

OutIn

In

Link

Request

Response

In this case, the HDL simulator responds to simulation requests it receives from
cosimulation blocks in a Simulink model. You begin a cosimulation session from
Simulink. After a session is started, you can use Simulink and the HDL simulator to
monitor simulation progress and results. For example, you might add signals to an HDL
simulator Wave window to monitor simulation timing diagrams.

Using the Block Parameters dialog box for an HDL Cosimulation block, you can configure
the following:

• Block input and output ports that correspond to signals (including internal signals)
of an HDL module. You can specify sample times and fixed-point data types for
individual block output ports if desired.

• Type of communication and communication settings used for exchanging data
between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. You can individually
specify the period of each clock.

• Tcl commands to run before and after the simulation.

HDL Verifier software equips the HDL simulator with a set of customized functions.
For ModelSim, when you use the function vsimulink, you execute the HDL simulator
with an instance of an HDL module for cosimulation with Simulink. After the module is

2-5

2 About HDL Verifier

loaded, you can start the cosimulation session from Simulink. Incisive users can perform
the same operations with the function hdlsimulink.

HDL Verifier software also includes a block for generating value change dump (VCD)
files. You can use VCD files generated with this block to perform the following tasks:

• View Simulink simulation waveforms in your HDL simulation environment
• Compare results of multiple simulation runs, using the same or different simulation

environments
• Use as input to post-simulation analysis tools

The HDL Cosimulation Wizard

HDL Verifier contains the Cosimulation Wizard feature, which uses existing HDL code
to create a customized MATLAB function (test bench or component), MATLAB System
object, or Simulink HDL Cosimulation block. For more information, see “Import HDL
Code for Cosimulation”.

Communications for HDL Cosimulation

The mode of communication that you use for a link between the HDL simulator and
MATLAB or Simulink depends on whether your application runs in a local, single-
system configuration or in a network configuration. If these products and MathWorks
products can run locally on the same system and your application requires only one
communication channel, you have the option of choosing between shared memory
and TCP/IP socket communication. Shared memory communication provides optimal
performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and network
configurations. This option offers the greatest scalability. For more on TCP/IP socket
communication, see “TCP/IP Socket Ports”.

Hardware Description Language (HDL) Support

All HDL Verifier MATLAB functions and the HDL Cosimulation block offer the same
language-transparent feature set for both Verilog and VHDL models.

HDL Verifier software also supports mixed-language HDL models (models with both
Verilog and VHDL components), allowing you to cosimulate VHDL and Verilog signals

2-6

 HDL Cosimulation

simultaneously. Both MATLAB and Simulink software can access components in
different languages at any level.

HDL Cosimulation Workflows

The HDL Verifier User Guide provides instruction for using the verification software
with supported HDL simulators for the following workflows:

• Simulating an HDL Component in a MATLAB Test Bench Environment
• Replacing an HDL Component with a MATLAB Component Function
• Simulating an HDL Component in a Simulink Test Bench Environment
• Replacing an HDL Component with a Simulink Algorithm
• Recording Simulink Signal State Transitions for Post-Processing

Product Features and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

MATLAB and
HDL simulator
cosimulation
(function)

MATLAB Fixed-Point
Designer™, Signal
Processing Toolbox™

Windows® 32- and
64-bit; Linux® 64-bit

MATLAB and
HDL simulator
cosimulation
(System object)

MATLAB and Fixed-
Point Designer

Communications
System Toolbox™,
DSP System
Toolbox™

Windows 32- and 64-
bit; Linux 64-bit

Simulink and
HDL simulator
cosimulation

Simulink, Fixed-
Point Designer

Signal Processing
Toolbox, DSP System
Toolbox

Windows 32- and 64-
bit; Linux 64-bit

2-7

2 About HDL Verifier

FPGA Verification

In this section...

“FPGA Verification with HDL Verifier and HDL Coder” on page 2-8
“Product Features and Platform Support” on page 2-8

FPGA Verification with HDL Verifier and HDL Coder

HDL Verifier works with Simulink or MATLAB and HDL Coder and the supported
FPGA development environment to prepare your automatically generated HDL code for
implementation in an FPGA. FPGA-in-the-Loop (FIL) simulation allows you to run a
Simulink or MATLAB simulation with an FPGA board strictly synchronized with this
software. This process lets you get real world data into your design while accelerating
your simulation with the speed of an FPGA.

You can generate a FIL programming file in one of the following ways:

• With the HDL Verifier FIL Wizard.
• With the HDL Coder Workflow Advisor.

The FIL Wizard uses any synthesizable HDL code including code automatically
generated from Simulink models by HDL Coder software. When you use FIL in the
Workflow Advisor, HDL Coder uses the loaded design to create the HDL code. Either
way, this HDL code is then augmented by customized code for FIL communication
with your design and assembled into an FPGA project. The applicable downstream
tools are used to process that project to create a programming file that is automatically
downloaded to the FPGA device on a development board for verification.

HDL Verifier supports the use of a FIL block in a model reference block and a System
object in conjunction with a MATLAB program.

Product Features and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

FPGA-in-the-Loop For FIL simulation
with MATLAB:

HDL Coder Windows 64-bit;
Linux 64-bit

2-8

 FPGA Verification

Product Feature Required Products Recommended
Products

Supported Platforms

MATLAB, Fixed-
Point Designer
For FIL simulation
with Simulink:
Simulink, Fixed-
Point Designer

Preregistered FPGA Devices for FIL Simulation

HDL Verifier supports FIL simulation on the devices as described in “Supported FPGA
Devices for FIL Simulation” on page 3-6. The FPGA board support packages contain
the definition files for all supported boards. You may download one or more vendor-
specific packages, but you must download one of the packages before you can use FIL or
customize your own board definition file using the New FPGA Board Wizard (see “Create
Custom FPGA Board Definition”).

To see the list of HDL Verifier support packages, visit “HDL Verifier Supported
Hardware” on page 2-15. To download an FPGA board support package:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

2-9

2 About HDL Verifier

TLM Component Generation

In this section...

“Generating TLM Components for Virtual Platform Development” on page 2-10
“Typical Users and Applications” on page 2-11
“Product Feature and Platform Support” on page 2-12

Generating TLM Components for Virtual Platform Development

HDL Verifier lets you create a SystemC Transaction Level Model (TLM) that can be
executed in any OSCI-compatible TLM 2.0 environment, including a commercial virtual
platform.

When used with virtual platforms, HDL Verifier joins two different modeling
environments: Simulink for high-level algorithm development and virtual platforms
for system architectural modeling. The Simulink modeling typically dispenses with
implementation details of the hardware system such as processor and operating system,
system initialization, memory subsystems, device configuration and control, and the
particular hardware protocols for transferring data both internally and externally.

The virtual platform is a simulation environment that is concerned about the hardware
details: it has components that map to hardware devices such as processors, memories,
and peripherals, and a means to model the hardware interconnect between them.

Although many goals could be met with a virtual platform model, the ideal scenario
for virtual platforms is to allow for software development—both high level application
software and low-level device driver software—by having fairly abstract models for the
hardware interconnect that allow the virtual platform to run at near real-time speeds, as
demonstrated in the following diagram.

2-10

 TLM Component Generation

The functional model provides a sort of halfway point between the speed you can achieve
with abstraction and the accuracy you get with implementation.

Typical Users and Applications

Using HDL Verifier and Simulink, you can create a TLM-compliant SystemC
Transaction Level Model (TLM) that can be executed in any OSCI-compatible TLM
environment, including a commercial virtual platform.

Typical users and applications include:

• System-level engineers designing electronic system models that include architectural
characteristics

• Software developers who want to incorporate an algorithm into a virtual platform
without using an instruction set simulator (ISS).

• Hardware functional verification engineers. In this case, the algorithm represents a
piece of hardware going into a chip.

2-11

2 About HDL Verifier

Product Feature and Platform Support

Product Feature Required Products Recommended
Products

Supported Platforms

TLM Generator Simulink Coder™ Embedded Coder®

(Simulink Coder is
also required)

Windows 32-bit and
64-bit; Linux 64-bit

2-12

 SystemVerilog DPI Component Generation

SystemVerilog DPI Component Generation

In this section...

“Export Simulink Subsystem or MATLAB Function Using DPI Interface” on page
2-13
“Generate SystemVerilog DPI Test Bench in HDL Coder” on page 2-13

Export Simulink Subsystem or MATLAB Function Using DPI Interface

You can export a Simulink subsystem or MATLAB function with a DPI interface for
Verilog or SystemVerilog simulation. The coder wraps generated C code with a DPI
wrapper accessed through a SystemVerilog thin interface function.

• Simulink subsystem — Access this feature from the Model Configuration Parameters
dialog box, under Code Generation. See “Generate SystemVerilog DPI-C
Component”.

• MATLAB function — Generate the component using the dpigen function. See
“Generate DPI Component Using MATLAB”.

HDL Verifier supports SystemVerilog DPI component generation with these products
and platforms.

Design Format Required Products Recommended
Products

Supported Platforms

Simulink subsystem Simulink and
Simulink Coder

Embedded Coder • Windows 32-bit
and 64-bit

• Linux 64-bit
MATLAB function MATLAB and

MATLAB Coder
 • Windows 64-bit

• Linux 64-bit

Generate SystemVerilog DPI Test Bench in HDL Coder

If you have an HDL Coder license, you can generate a SystemVerilog DPI-C test
bench. Use the test bench to verify your generated HDL code using C code generated
from your entire Simulink model, including the DUT and data sources. To use this
feature, your entire model must support C code generation with Simulink Coder. You

2-13

2 About HDL Verifier

can access this feature in HDL Workflow Advisor under HDL Code Generation
> Set Testbench Options, or in the Model Configuration Parameters dialog box,
under HDL Code Generation>Test Bench. Or, for command-line access, set the
GenerateSVDPITestBench property of makehdltb. See (HDL Coder).

HDL Verifier supports SystemVerilog DPI test bench generation in HDL Coder with
these products and platforms.

Design Format Required Products Recommended
Products

Supported Platforms

Simulink subsystem Simulink and
Simulink Coder

Embedded Coder • Windows 32-bit
and 64-bit

• Linux 64-bit

More About
• “DPI-C Component Generation with Simulink”
• “DPI-C Component Generation with MATLAB”

2-14

 HDL Verifier Supported Hardware

HDL Verifier Supported Hardware

As of this release, HDL Verifier supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release Available

Altera FPGA Boards Altera R2013a Current
Xilinx FPGA Boards Xilinx R2013a Current

For a complete list of supported hardware, see Hardware Support.

2-15

https://www.mathworks.com/hardware-support.html?fq=product:ES

3

Third-Party Product Requirements

3 Third-Party Product Requirements

Supported EDA Tools and Hardware

In this section...

“Cosimulation Requirements” on page 3-2
“FPGA Verification Requirements” on page 3-3
“DPI Component Generation Requirements” on page 3-9
“TLM Generation Requirements” on page 3-9

Cosimulation Requirements

• “Cadence Incisive Requirements” on page 3-2
• “Mentor Graphics Questa and ModelSim Usage Requirements” on page 3-3

To get started, see “Set Up MATLAB-HDL Simulator Connection” or “Start HDL
Simulator for Cosimulation in Simulink”.

Cadence Incisive Requirements

MATLAB and Simulink support Cadence verification tools using HDL Verifier. Only the
64-bit version of Incisive is supported for cosimulation. Use one of these recommended
versions, which have been fully tested against the current release:

• Incisive 15.2

Note: Not supported for nclaunch with runmode set to Batch. Set runmode to CLI
instead.

• Incisive 14.1
• Incisive 13.2

The HDL Verifier shared libraries (liblfihdls*.so, liblfihdlc*.so) are built using
the gcc included in the Cadence Incisive simulator platform distribution. Before you link
your own applications into the HDL simulator, first try building against this gcc. See
the HDL simulator documentation for more details about how to build and link your own
applications.

3-2

 Supported EDA Tools and Hardware

Mentor Graphics Questa and ModelSim Usage Requirements

MATLAB and Simulink support Mentor Graphics verification tools using HDL Verifier.
Use one of the following recommended versions. Each version has been fully tested
against the current release:

• Questa Core/Prime 10.5b,
• QuestaSim 10.4c, 10.3
• ModelSim/QuestaSim PE 10.4c, 10.3e

FPGA Verification Requirements

• “Xilinx Usage Requirements” on page 3-3
• “Altera Quartus Prime Usage Requirements” on page 3-3
• “Supported FPGA Board Connections for FIL Simulation” on page 3-4
• “Supported FPGA Devices for FIL Simulation” on page 3-6
• “Supported FPGA Device Families for Board Customization” on page 3-8

Xilinx Usage Requirements

MATLAB and Simulink support Xilinx design tools using HDL Verifier. Use the FPGA-
in-the-loop tools with these recommended versions:

• Xilinx Vivado® 2015.2, 2015.4, 2016.2.
• Xilinx ISE 14.4, 14.6, 14.7

ISE 11.1 or newer is recommended. Consult Xilinx user documentation for
compatibility of ISE tools with various Linux distributions.

Note: Xilinx ISE is required for FPGA boards in the Spartan®-6, Virtex®-4, Virtex-5,
and Virtex-6 families.

For tool setup instructions, see “Set Up FPGA Design Software Tools”.

Altera Quartus Prime Usage Requirements

MATLAB and Simulink support Altera design tools using HDL Verifier. Use the FPGA-
in-the-loop tools with these recommended versions:

• Altera Quartus® II 15.0

3-3

3 Third-Party Product Requirements

• Altera Quartus Prime 15.1, 16.0

For tool setup instructions, see “Set Up FPGA Design Software Tools”.

Supported FPGA Board Connections for FIL Simulation

For board support, see “Supported FPGA Devices for FIL Simulation” on page 3-6.

Additional boards can be custom added with the “FPGA Board Manager”. See “Supported
FPGA Device Families for Board Customization” on page 3-8.

JTAG Connection

Vendor Supported Devices Required
Hardware

Required Software

Altera The FPGA board
must be using an
FPGA device in the
supported Altera
FPGA families.

• USB Blaster
I or USB
Blaster II
download
cable

• USB Blaster I or II driver
• For Windows operating systems:

Quartus Prime executable directory
must be on system path.

• For Linux operating systems:
versions below Quartus II 13.1
are not supported. Quartus
II 14.1 is not supported. Only
64-bit Quartus is supported.
Quartus library directory must
be on LD_LIBRARY_PATH before
starting MATLAB. Prepend the
Linux distribution library path
before the Quartus library on
LD_LIBRARY_PATH. For example,
/lib/x86_64-linux-gnu:

$QUARTUS_PATH.
Xilinx The board must

be using one of the
following supported
Xilinx FPGAs:
Artix®-7, Virtex-7,
Kintex®-7 or Zynq®

7000.

• Digilent®

download
cable. If your
board has
a standard
Xilinx 14
pin JTAG
connector, you

• For Windows operating systems:
Xilinx Vivado executable directory
must be on system path.

• For Linux operating systems:
Digilent Adept2

3-4

 Supported EDA Tools and Hardware

Vendor Supported Devices Required
Hardware

Required Software

can obtain
the HS2 cable
from Digilent.

Note: When simulating your FPGA design through Digilent JTAG cable with Simulink or
MATLAB, you can not use any debugging software that requires access to the JTAG; for
example, Vivado Logic Analyzer.

Ethernet Connection

Required Hardware Supported Interfaces Required Software

• Gigabit Ethernet card
• Cross-over Ethernet

cable
• FPGA board with

supported Ethernet
connection

• Gigabit Ethernet —
GMII

• Gigabit Ethernet —
RGMII

• Gigabit Ethernet —
SGMII

• Ethernet — MII

There are no software
requirements for an
Ethernet connection, but
ensure that the firewall
on the host computer
does not prevent UDP
communication.

Note: Ethernet connection
to Virtex-7 VC707 not
supported for Vivado
versions older than 2013.4.

PCI Express

Note: FIL over PCI Express® connection is supported only for 64-bit Windows operating
systems.

Device Family Board Required Software

Xilinx • Kintex-7 KC705 Evaluation Kit
• Virtex -7 VC707 Evaluation Kit

Vivado 2015.2

3-5

3 Third-Party Product Requirements

Device Family Board Required Software

Altera • Cyclone® V GT FPGA Development Kit
• DSP Development Kit, Stratix® V

Edition

Altera Quartus II 15.0

Supported FPGA Devices for FIL Simulation

HDL Verifier supports FIL simulation on the devices shown in the following table.
The board definition files for these boards are in the “Download FPGA Board Support
Package”. You can add other FPGA boards for use with FIL with FPGA board
customization (“FPGA Board Customization”).

Device Family Board Comments

Xilinx
Artix-7

Digilent Nexys™4 Artix-7
Digilent Arty Board

Arty board supports JTAG
connection only.

Xilinx
Kintex-7

Kintex-7 KC705

Xilinx
Kintex
UltraScale™

Kintex UltraScale FPGA KCU105
Evaluation Kit

Supports JTAG connection
only. Ethernet is not
supported.

Xilinx
Spartan-6

Spartan-6 SP605
Spartan-6 SP601
XUP Atlys Spartan-6

Xilinx Virtex
UltraScale

Virtex UltraScale FPGA VCU108
Evaluation Kit

Supports JTAG connection
only. Ethernet is not
supported.

Xilinx
Virtex-7

Virtex-7 VC707
Virtex-7 VC709

VC709 supports JTAG and
PCI Express connections.

Xilinx
Virtex-6

Virtex-6 ML605

Xilinx
Virtex-5

Virtex ML505
Virtex ML506
Virtex ML507
Virtex XUPV5–LX110T

Xilinx Virtex Virtex ML401
Virtex ML402

3-6

 Supported EDA Tools and Hardware

Device Family Board Comments

Virtex ML403
Xilinx Zynq Zynq-7000 ZC702

Zynq-7000 ZC706
ZedBoard™
ZYBO™ Zynq-7000 Development Board

Zynq boards support a
JTAG connection only.

Altera Arria®

II
Arria II GX FPGA Development Kit

Altera Arria
V

Arria V SoC Development Kit
Arria V Starter Kit

Arria V SoC development
kit supports a JTAG
connection only.

Altera Arria
10

Arria 10 SoC Development Kit

Altera
Cyclone IV

Cyclone IV GX FPGA Development Kit
DE2-115 Development and Education Board
BeMicro SDK

The Altera DE2-115 FPGA
development board has two
Ethernet ports. FPGA-in-
the-loop uses only Ethernet
0 port. Make sure that you
connect your host computer
with the Ethernet 0 port on
the board via an Ethernet
cable.

Altera
Cyclone III

Cyclone III FPGA Starter Kit
Cyclone III FPGA Development Kit
Altera Nios II Embedded Evaluation Kit,
Cyclone III Edition

Cyclone III FPGA starter
kit supports a JTAG
connection only.

Altera
Cyclone V

Cyclone V GX FPGA Development Kit
Cyclone V SoC Development Kit
Cyclone V GT Development Kit
Arrow® SoCKit Development Kit

The Cyclone V SoC and
Arrow SoCKit development
kits are supported for JTAG
connection only.

Altera MAX®

10
Arrow MAX 10 DECA

Altera
Stratix IV

Stratix IV GX FPGA Development Kit

3-7

3 Third-Party Product Requirements

Device Family Board Comments

Altera
Stratix V

DSP Development Kit, Stratix V Edition

Limitations

• For FPGA development boards that have more than one FPGA device, only one such
device can be used with FIL.

FPGA Board Support Packages

The FPGA board support packages contain the definition files for all supported boards.
You can download one or more vendor-specific packages. To use FIL, download at least
one of these packages, or customize your own board definition file. See “Create Custom
FPGA Board Definition”.

To see the list of HDL Verifier support packages, visit “HDL Verifier Supported
Hardware” on page 2-15. To download an FPGA board support package:

• On the MATLAB Home tab, in the Environment section, click Add-Ons > Get
Hardware Support Packages.

Supported FPGA Device Families for Board Customization

HDL Verifier supports the following FPGA device families for board customization; that
is, when you create your own board definition file. See “FPGA Board Customization”.

Device Family Restrictions

Artix 7
Kintex 7
Kintex UltraScale Supports JTAG connection only.

Ethernet is not supported.
Spartan 6 Ethernet PHY RGMII is not

supported.
Virtex 4
Virtex 5
Virtex 6

Xilinx

Virtex 7 Supports Ethernet PHY SGMII
only.

3-8

 Supported EDA Tools and Hardware

Device Family Restrictions

Virtex UltraScale Supports JTAG connection only.
Ethernet is not supported.

Zynq 7000
Arria II
Arria V
Arria 10
Cyclone III
Cyclone IV
Cyclone V
MAX 10
Stratix IV

Altera

Stratix V

DPI Component Generation Requirements

DPI component generation supports the same versions of Cadence Incisive and Mentor
Graphics Questa and ModelSim as for cosimulation. You can generate a DPI component
for use with either 64-bit or 32-bit Incisive.

Note: When you run a DPI component in ModelSim 10.5b on Debian® 8.3, you may
encounter a library incompatibility error:

** Warning: ** Warning: (vsim-7032) The 64-bit glibc RPM does not appear to be installed on this machine. Calls to gcc may fail.

** Fatal: ** Error: (vsim-3827) Could not compile 'STUB_SYMS_OF_fooour.so':

To avoid this issue, on the Code Generation pane in Configuration Parameters, try
these options:

• Set the Build configuration to Faster Runs.

• Or, set the Build configuration to Specify and specify the compiler flag -O3.

TLM Generation Requirements

With the current release, TLMG includes support for:

3-9

3 Third-Party Product Requirements

• Compilers:

• Visual Studio®: VS2008, VS2010, VS2012, and VS2013
• Windows 7.1 SDK
• gcc 4.4.6

• SystemC:

• SystemC 2.3.1 (TLM included)

You can download SystemC and TLM libraries at http://accellera.org. Consult
the Accellera Systems Initiative website for information about how to build these
libraries after downloading.

• System C Modeling Library (SCML):

• SCML 2.2

You can download SCML from https://www.synopsys.com.

3-10

http://accellera.org
https://www.synopsys.com

